Bosonic Formulas for Affine Branching Functions
نویسنده
چکیده
In this paper we derive two bosonic (alternating sign) formulas for branching functions for general affine Kac-Moody Lie algebra g. Both formulas are given in terms of Weyl group and string functions of g.
منابع مشابه
Infinite Fusion Products
In this paper we study an approximation of tensor product of irreducible integrable sl2 representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent characters of spaces of these theories as limits of certain restricted Kostka polynomials. This leads to the bosonic (which is known) and fermionic (which is new) formu...
متن کاملThe sums of Rogers, Schur and Ramanujan and the Bose-Fermi correspondence in 1 + 1-dimensional quantum field theory
We discuss the relation of the two types of sums in the Rogers-Schur-Ramanujan identities with the Bose-Fermi correspondence of massless quantum field theory in 1 + 1 dimensions. One type, which generalizes to sums which appear in the Weyl-Kac character formula for representations of affine Lie algebras and in expressions for their branching functions, is related to bosonic descriptions of the ...
متن کاملFermionic Formulas for Level-restricted Generalized Kostka Polynomials and Coset Branching Functions
Level-restricted paths play an important rôle in crystal theory. They correspond to certain highest weight vectors of modules of quantum affine algebras. We show that the recently established bijection between Littlewood–Richardson tableaux and rigged configurations is well-behaved with respect to level-restriction and give an explicit characterization of level-restricted rigged configurations....
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملDecomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of Z2-graded Lie algebras
We give uniform formulas for the branching rules of level 1 modules over orthogonal affine Lie algebras for all conformal pairs associated to symmetric spaces. We also provide a combinatorial intepretation of these formulas in terms of certain abelian subalgebras of simple Lie algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006